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Abstract

This study focuses on the development of a next generation Multi-Objective Evolu-
tionary Algorithm (MOEA) that can learn and exploit complex interdependencies
and/or correlations between decision variables in monitoring design applications
to provide more robust performance for large problems (defined in terms of both
the number of objectives and decision variables). The proposed MOEA is termed
the Epsilon-Dominance Hierarchical Bayesian Optimization Algorithm (ε-hBOA),
which is representative of a new class of probabilistic model building evolution-
ary algorithms. The ε-hBOA has been tested relative to a top performing tradi-
tional MOEA, the Epsilon-Dominance Nondominated Sorted Genetic Algorithm
II (ε-NSGAII) for solving a four-objective LTM design problem. A comprehen-
sive performance assessment of the ε-NSGAII and various configurations of the
ε-hBOA have been performed for both a 25 well LTM design test case (representing
a relatively small problem with over 33-million possible designs), and a 58 point
LTM design test case (with over 2.88 × 1017 possible designs). The results from
this comparison indicate that the model building capability of the ε-hBOA greatly
enhances its performance relative to the ε-NSGAII, especially for large monitoring
design problems. This work also indicates that decision variable interdependencies
appear to have a significant impact on the overall mathematical difficulty of the
monitoring network design problem.
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1 Introduction

This study contributes a new Multi-Objective Evolutionary Algorithm
(MOEA) termed the Epsilon-Dominance Hierarchical Bayesian Optimization
Algorithm (ε-hBOA), which has been developed to solve large, long-term
groundwater monitoring (LTM) design problems (defined in terms of both the
number of design objectives and decision variables). LTM networks use spa-
tially distributed wells to characterize groundwater contamination over long
time scales (ranging from years to decades) and ensure that the contamination
does not pose an unacceptable risk to humans and the environment [1]. Man-
agement strategies for the health risks associated with contaminated ground-
water must also consider the long-term economic costs associated with site
monitoring. Federal expenditures on LTM for the years 2000 through 2010
are estimated at 5-billion US dollars [1], motivating the need for cost effec-
tive LTM design strategies that are protective of human and ecological sys-
tems. However, designing LTM networks for contaminated groundwater is a
challenging problem that has long been recognized to suffer from a “curse
of dimensionality” [2]. This is largely due to their discrete decision spaces
that grow exponentially as the number of contaminant measurements, their
locations, and sampling rates are considered.

For example, the decision space (or total number of possible designs) of a
LTM network design problem grows according to the equation 2snt where s
represents the number of potential observations at a sampling location, n is
the number of possible sampling locations, and t is the number of sampling
periods. The 2 in this equation assumes a binary decision where there are two
options, sample (1) or do not sample (0). If there are 25 potential sampling
locations (n = 25) to characterize a single contaminant (s = 1) at a snapshot
in time (t = 1), this particular network design problem contains 225 (or over 33-
million) possible designs. Adding just one additional sampling period results
in a significant increase in the size of the decision space (over 1.12 × 1015

possible designs for n = 25, s = 1 and t = 2).

The exponential scaling of the LTM problem as well as its discrete decisions
have motivated several researchers to utilize evolutionary algorithms (EAs)
in its solution since the early 1990s [3–9]. EAs evolve populations of designs
toward near optimal sampling schemes using processes that are analogous to
selection, mating, and mutation. While previous LTM design applications us-
ing EAs have generally been deemed successful in their attempts to generate
approximately optimal solutions, they have typically either been applied to
problems of limited size and complexity or limited in their exploration of de-
signs. In general, the LTM design problem is inherently suited to formulations
that take into account multiple design objectives simultaneously (e.g., cost, un-
certainty, reliability, etc. [2]). The use of multiple design objectives typically
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results in tradeoffs where the performance in one objective cannot be im-
proved without degrading the performance in another objective [10]. The goal
of multiobjective search is to identify optimal solutions that compose tradeoff
surfaces of maximum dimension M − 1 given M design objectives. For the
past 20 years, a variety of MOEAs have been developed and shown to be ca-
pable of optimizing highly nonlinear, discrete, and non-convex objective space
landscapes without differentiation [11–13]. In addition, MOEAs’ population-
based search enables them to evolve approximations for entire tradeoff (or
Pareto [14]) surfaces within a single optimization run.

Building on prior multiobjective LTM design applications [1, 3, 4, 7, 15–25],
recent studies [7, 26] have shown that MOEAs can be combined with visual-
ization tools to solve LTM problems with three or more objectives (termed
high-order Pareto optimization problems). Multiobjective formulations add to
the complexity of LTM design problems by increasing the number of solutions
that must be evolved. It has also been shown that the required population size
for an MOEA to maintain a diverse representation of the LTM design tradeoffs
is directly related to the complexity of the objective space, and that adding
objectives generally increases this complexity [27, 28]. Moreover, functional
interdependencies between decision variables also increases the difficulty and
computational search requirements for optimization problems [29]. In short,
this work posits that a new class of combinatorial search algorithm is necessary
to resolve the LTM problem’s potential for large numbers of design objectives
and sampling decisions that can have complex spatial and/or temporal inter-
dependencies depending on the contaminant plume.

Kollat and Reed [30] recently showed that as the number of LTM sampling
decisions increases linearly, the computational complexity of using the Epsilon-
Dominance Nondominated Sorted Genetic Algorithm II (ε-NSGAII) grows
quadratically. Computational scaling defines how problem size (i.e., number
of wells, contaminants sampled, sampling times) increases the average number
of design evaluations required by an MOEA to evolve a high quality solution
for a given LTM design problem. The ε-NSGAII has been shown previously to
be highly robust at solving LTM design problems relative to other state-of-the-
art MOEAs [9]. Kollat and Reed [32] conclude that traditional MOEAs such
as the ε-NSGAII are limited to increasingly lower quality approximations for
large LTM problems given their large solution set sizes and the limits posed
by their quadratic computational complexities. This study builds on Kollat
and Reed [30] by introducing a new MOEA termed the Epsilon Dominance
Hierarchical Bayesian Optimization Algorithm (ε-hBOA), which uses Bayesian
networks (a form of probabilistic model building) to optimize large LTM design
problems. This study seeks to determine if the incorporation of probabilistic
modeling building improves the ability of an MOEA to solve LTM design
applications, and if so, what is the best implementation of model building to
maximize search success?
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The remainder of this study proceeds as follows. Section 2 details the
four-objective LTM test case problem formulation. Section 3 discusses the
ε-NSGAII and the ε-hBOA, as well as the various configurations of the
ε-hBOA tested in this study. Section 4 describes the computational exper-
iment used to demonstrate the performance of the new ε-hBOA algorithm.
Sections 5 and 6 present and discuss the results of the study. Section 7 con-
cludes with our key findings and recommendations for future work.

2 Monitoring Case Studies

2.1 Test Cases

The LTM network design test case used in this study is based on a 50-million
node flow and transport simulation representing the migration of a hypothet-
ical perchloroethylene (PCE) plume originating from an underground storage
tank [31]. Although the contamination is simulated, the hydrogeology of the
site is real and has been extensively characterized [32–35]. For this test case,
there are 29 sampling wells located throughout the contaminant plume, each
with no more than three sampling ports available along its vertical axis. This
results in a total of 58 sampling locations where PCE concentration data is
available. Additional details on this test case can be found in Maxwell et
al. [31].

In order to test how LTM problem size impacts the performance of a tradi-
tional MOEA versus that of the new ε-hBOA algorithm, two LTM network
design test cases were developed - one small and one large. The small test case
was developed by eliminating four wells from the 29 well test case for a total of
25 sampling wells. Each of the 25 well locations was then treated as a decision.
This means that if a particular well is chosen for sampling and it has multi-
ple sampling ports available, all sampling ports are utilized. The size of this
test case was chosen in part because it can be enumerated (solved to comple-
tion) by evaluating all 225 (or over 33.5-million) possible designs given current
computational constraints. Knowing the true solution to the LTM test case
ultimately provides the most rigorous means of assessing MOEA performance.
In order to test MOEA performance for a large network design problem, the
second larger test case treats each of the 58 sampling ports available at the
29 well locations as decision variables. This increases the size of the decision
space to 258 (or over 2.88×1017) possible designs. Given that an LTM problem
of this size cannot be enumerated, a “best known” reference set was developed
by combining all of the solutions found by all algorithm runs. Hereafter, the
small test case will be referred to as the 25 well test case, and the large test
case will be referred to as the 58 point test case.
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2.2 Design Objectives

Four design objectives were chosen for this study, each of which were mini-
mized. The design objectives included: (1) the cost of sampling the contami-
nant plume, (2) the error relative to using all available data points to create
spatial plume maps, (3) the spatial uncertainty associated with characterizing
the plume, and (4) the error associated with estimating the mass of contami-
nant in the plume. Hereafter, each of the four design objectives are referred to
as COST, ERROR, UNCERT, and MASS respectively. Equation 1 describes
each of the four objectives as a function of the vector xκ representing a particu-
lar sampling plan κ in the entire decision space Ω. Each sampling design vector
is composed of the design decisions xκ,i, ones and zeros indicating whether or
not a sample is taken. Equation 1 is subject to the constraint that a particular
sampling plan xκ does not result in unestimated PCE concentrations, other-
wise the design is penalized. The spatial interpolation scheme used to estimate
PCE concentrations at unsampled locations throughout the domain, as well
as the penalization scheme used for constraint violations is discussed later in
this section.

Minimize:

F(xκ) =
(
fcost(xκ), ferror(xκ), funcert(xκ), fmass(xκ)

)
, ∀κ ∈ Ω

where xκ,i =

⎧⎪⎨
⎪⎩

1, if the ith well is sampled

0, otherwise
, ∀κ, i

Subject to U(xκ) = 0

(1)

COST. The cost of a particular sampling plan xκ is described by Equation 2.

fcost(xκ) =
nsamples∑

i=1

CS(i)xκ,i (2)

The COST objective is simply the summation of the cost, CS(i), of each sam-
ple for a particular plan. In this study, normalized costs were used. For the
25 well test case, since all sampling ports are utilized when a well is sampled,
CS(i) ranged from 1 to 3 depending on the well, while for the 58 point case,
CS(i) was always 1. As a result, the range of the COST objective for the 25
well test case was 0 to 47 and for the 58 point test case was 0 to 58.

ERROR. The error associated with characterizing the plume is described by
Equation 3.

ferror(xκ) =
nestimates∑

j=1

(
call(uj) − cκ(uj)

)2

(3)
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Quantile Kriging (QK) described later in this section was used to obtain PCE
concentration estimates throughout the sampling domain based on a grid con-
taining points uj . The ERROR objective is quantified by summing the squares
of the residuals between the Kriged PCE concentration map obtained by sam-
pling from all locations, call(uj), and the Kriged PCE concentration map,
cκ(uj), obtained using sampling plan κ.

UNCERT. The uncertainty associated with characterizing the plume is de-
scribed by Equation 4.

funcert(xκ) =
nestimates∑

j=1

Ajσ(uj) (4)

The UNCERT objective is quantified by summing the weighted standard de-
viations, σ(uj), obtained from QK throughout the sampling domain. The
weighting factor Aj can be used to assign importance to certain regions of
the domain. For this study, all regions were assumed equally important. The
weighting factor, Aj, used for all locations, uj, was based on the standard
deviation of a uniform distribution, 2

√
3.

MASS. The error in estimated dissolved mass of PCE contaminant as a result
of characterizing the plume using QK is described by Equation 5.

fmass(xκ) = log10

(∣∣∣∣∣Massall − Massκ

Massall

∣∣∣∣∣ · 100%

)
(5)

The MASS objective quantifies the relative error between the mass of PCE
contamination estimated based on sampling from all locations, Massall, and
the mass of PCE contamination estimated, Massκ, based on a particular sam-
pling plan κ. Dissolved mass estimates were based on the concentration data
provided by QK throughout the sampling domain. This objective is scaled
logarithmically since its values can range over multiple orders of magnitude.

Spatial Interpolation. PCE concentration estimates were obtained at un-
sampled locations throughout the sampling domain using QK. Kriging pro-
vides a minimum error variance estimate of contaminant concentration at an
unsampled location provided the data at the sampled locations [36,37]. Quan-
tile Kriging was chosen in this study based on its effectiveness in providing
high quality plume interpolations despite highly variable PCE concentrations
and preferential sampling [38]. QK extends Ordinary Kriging by transforming
contaminant concentrations to quantile space according to their rank order-
ing [39]. This is done to reduce the influence of extreme concentration values on
the mean and variance of the data. A C version of KT3D, a three-dimensional
Kriging library included as part of the GSLIB software package available in
Fortran [36] was used to perform the Kriging required to quantify the ERROR,
UNCERT, and MASS objectives.
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Constraint Violations. A moving local neighborhood (i.e., a locally varying
mean) was used to perform each spatial interpolation. If a particular sampling
plan xκ contained too few samples, or if the samples were poorly distributed in
space, unestimated points result and the constraint of Equation 1 is violated
resulting in a penalty. Penalizing the objective values of solutions that violate
a constraint rather than eliminating them from consideration is a common
practice in evolutionary optimization to ensure that these solutions are given
the opportunity to evolve into better solutions. Solutions which result in a
constraint violation may contain valuable information, making their continued
contribution to the evolutionary process important.

Fpenalty(xκ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

fpenalty
cost = fcost + fmax

cost

fpenalty
conc = fconc + nestimates + U(xκ) + fmax

cost

fpenalty
uncert = funcert + nestimates + U(xκ) + fmax

cost

fpenalty
mass = fmass + nestimates + U(xκ) + fmax

cost

(6)

Equation 6 penalizes the COST objective based on the maximum cost of sam-
pling fmax

cost , and penalizes the ERROR, UNCERT, and MASS objectives based
on the number of QK estimates throughout the domain nestimates, the number
of unestimated points causing the constraint violation U(xκ), and the max-
imum cost of sampling the system fmax

cost . Taking into account the number of
unestimated points causing the constraint violation provides a relative weight-
ing to the penalized solutions (i.e., solutions with many unestimated points
are penalized more heavily than those with few unestimated points).

3 Multiobjective Evolutionary Optimization

The goal of multiobjective optimization is to identify the Pareto-optimal trade-
offs between an application’s objectives. These tradeoffs are composed of the
set of solutions that are better than all other solutions in at least one ob-
jective and are termed non-dominated or Pareto-optimal solutions [14]. The
Pareto-optimal front is obtained by plotting these solutions according to their
objective values yielding maximally an M −1 dimensional surface where M is
the total number of design objectives. MOEAs’ population-based search en-
ables them to evolve entire tradeoff (or Pareto [14]) surfaces within a single
optimization run for problems with huge decision spaces. For additional re-
sources on multiobjective optimization, the reader is encouraged to refer to
the books by Deb [10] and Coello Coello [40] for comprehensive introductions
to these topics.
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3.1 The Epsilon-Nondominated Sorted Genetic Algorithm-II (ε-NSGAII)

The ε-NSGAII has been shown to perform very well relative to other state-of-
the-art MOEAs at solving LTM network design problems [7,9,30]. In addition,
the ε-NSGAII’s performance has been validated extensively on a variety of test
functions and applications [41–44]. The ε-NSGAII is based on the original
NSGAII [45], which uses nondomination sorting and crowding distance to
maintain solution diversity, simulated binary crossover (SBX) [46], polynomial
mutation [10], and elitism [10]. The ε-NSGAII expands on the original NSGAII
through the inclusion of dynamic population sizing [47] and ε-nondominance
archiving [48, 49].

The ε-NSGAII evaluates potential LTM designs using Equation 1. Initially, a
population of N random designs is generated and non-domination and crowd-
ing distance [45] are used to assign fitness values to each design based on
their performance across the suite of objectives. SBX crossover and polyno-
mial mutation are then performed to generate N child solutions created from
the selected group of highly fit parents. The algorithm then combines N child
solutions and N parent solutions into a temporary pool of 2N candidate so-
lutions. Non-domination sorting is then used to rank each of the 2N designs
based on the number of solutions that dominate them in all objectives. In
addition, crowding distance is calculated based on the average Euclidean dis-
tance between a design and the remaining designs that have been assigned
the same rank. At this point, a new population of N solutions is filled by
gathering the highest ranked solutions. When solutions of equal rank exceed
the size of the new population, two-step crowded binary tournament selection
is performed to fill the available population slots while giving preference to
solutions with higher crowding distance values (see “Front i” in Figure 2).
Designs with higher crowding distance values add diversity to the population
of designs, which helps to ensure that the ε-NSGAII will find solutions along
the full extent of the Pareto surface. The N children that have been selected
now become the parents of a subsequent generation from which the process
is repeated. In addition these N children are eligible for entry into an offline
archive that stores the best solutions found throughout the run. To achieve
entry into the archive, child solutions must be ε-nondominated with respect
to the currently stored solutions of the archive.

Two defining characteristics of the ε-NSGAII [9] are its ability to dynamically
change its population size [47] based on search progress, and the inclusion of
ε-nondominance archiving [48, 49] based on user specified precision require-
ments for each objective. Epsilon-nondominance archiving allows the user to
control the computational cost of their application by eliminating the need to
evolve unnecessarily precise solutions [9,30,48]. Depending on the preferences
of the user and their willingness to accept an approximation for the full res-
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olution Pareto set, ε-nondominance can greatly decrease the computational
requirements of the algorithm as was recently shown by Kollat and Reed [30].
Dynamic population sizing [47] eliminates the need to specify the population
size of the ε-NSGAII by using a series of connected runs where small popu-
lations are initially exploited to pre-condition search and subsequent popu-
lations are sized based on search progress. Dynamic population sizing allows
the ε-NSGAII’s population size to increase or decrease commensurate with
problem difficulty. In addition, when the size of the ε-nondominance archive
stabilizes, the ε-NSGAII’s connected runs are equivalent to a diversity-based
EA search enhancement recommended by Goldberg [50] termed time continu-
ation where diverse search is promoted for as long as is necessary or feasible.
The interested reader can refer to prior published work regarding these fea-
tures of the ε-NSGAII [9, 30].

3.2 The Epsilon-Nondominated Hierarchical Bayesian Optimization Algo-
rithm (ε-hBOA).

For the LTM design problem, decisions have complex interdependencies or
correlations as a result of the underlying physics of flow-and-transport, the in-
fluence of domain geometry, and the underlying properties of the performance
criteria considered. Recent literature in the field of evolutionary computa-
tion [50, 51] has shown that identifying these complex interdependencies and
preserving them while generating new solutions is vital for EAs solving dif-
ficult engineering and science problems. The traditional MOEA operators of
crossover and mutation assume that all of a problem’s decisions are statis-
tically independent, which may limit their performance for some challenging
applications such as LTM design. A new class of EAs termed Probabilistic
Model Building Genetic Algorithms (PMBGAs) “learn” the linkages between
decision variables by building probabilistic models that express the interdepen-
dencies between decision variables to better preserve these links throughout
the evolutionary process [51]. PMBGAs differ from traditional genetic algo-
rithms by replacing the crossover and mutation operators with a probabilistic
model [29]. Each generation, promising solutions are selected from the pop-
ulation and a probability distribution is estimated based on the conditional
relationships of decision variables. New child solutions are then generated by
sampling the estimated probability distribution. PMBGAs can be useful on
any class of problem where decision variables are correlated (or linked) with
one another. For example, in LTM design, the decision to sample from a cer-
tain location in space and time affects other sampling decisions because of the
spatio-temporal structure of a contaminant plume. Prior PMBGA literature
has shown that model building algorithms are generally less effective than
traditional EAs for easy problems that are linearly separable (i.e., indepen-
dent decisions) and increasingly superior as problem difficulty increases (i.e.,

9



ACCEPTED MANUSCRIPT 
 

1

4

5

3

2

Source

1

4

5

3

2

Source

Independent Wells

Conditionally 
Dependent Wells

A

B

Fig. 1. Potential Bayesian network relationship of sampling wells for a contamination
plume. Figure A demonstrates the case when all wells are sampled independently
and Figure B illustrates the case where conditional probabilities may exist in sam-
pling various wells.

increasing interdependencies between decisions) [51].

The Hierarchical Bayesian Optimization Algorithm (hBOA) developed by Pe-
likan [29] attempts to overcome the difficulties posed by large sets of inter-
related decision variables by building Bayesian network models of the decision
space. Bayesian networks [52] use directed acyclic graphs (defined as graphs
with edges directed between vertices where there are no cycles which center
on only one vertex [53]), to model sets of conditional probabilities between
variables. The network contains a structure showing which variables are in-
dependent and a set of conditional probabilities for each variable [52]. Each
decision variable of the problem is represented as a node in the Bayesian net-
work. Edges, which represent the conditional probabilities between each of the
decision variables, are used to establish relationships between the nodes. For
example, if two decisions (nodes) are completely independent of one another,
no edges connect these nodes. Figure 1 presents a hypothetical illustration of
the potential for conditional dependencies that might exist between monitor-
ing wells for a contamination plume in a typical LTM application. Figure 1A
illustrates the case where the probability of sampling from each of the five
potential monitoring points are completely independent of one another (i.e.,
there are no edges connecting the decisions). This represents the assumption
made by the ε-NSGAII. Figure 1B illustrates the case when sampling certain
wells may be dependent on whether or not a sample has been taken at an-
other well. For example, the decision to sample from well “3” may depend on
whether or not contamination exists at wells “1” or “2”. While the dependency
structure of network design problems has the potential to be quite complex,
the identification of at least some of these dependencies may greatly aid in
improving the search efficiency of MOEAs.
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The Bayesian network model is built iteratively using a greedy search algo-
rithm [54] that performs elementary network operations such as edge addi-
tions, removals, and reversals, intended to maximally improve the quality of
the model. Changes in model quality can be measured using a variety of infor-
mation theory based metrics [29], some of which include the Bayesian Dirichlet
metric (BD) [54], the K2 Metric [55], or the Bayes Information Criterion (BIC)
metric [56]. These metrics enforce Occam’s Razor by penalizing complex mod-
els that do not significantly improve their predictive skill. Regardless of the
chosen metric, network operations which result in the greatest metric score
increase are the basis for building the Bayesian network model [29]. Once ele-
mentary network operations no longer exhibit significant improvements in the
model, the construction of the network is assumed adequate and the Bayesian
network model building is terminated. In each generation, the Bayesian net-
work models are built from the binary strings that compose the current pop-
ulation. Models are rewarded when they find binary variable combinations
within the population that are associated with highly ranked solutions.

In complex problems such as LTM, there may be interactions within highly
correlated groups of decisions as well as across those groups (e.g., well clusters
in the source area or sampling points along a plume’s boundaries). The hBOA
was selected in this study because of its ability to solve hierarchically difficult
problems. Mathematically, hierarchy is defined by the ability to break down
a system into subsystems, each of which in turn represents a hierarchy them-
selves, until some decomposable bottom level is reached [57]. For example in
the context of the LTM design test case used in this study, combinations of
wells are important for defining major plume zones such as the source area
or leading edge. Within each area, each well can define concentrations at up
to three vertical locations, and it would seem reasonable that a bottom level
of problem decomposability would correspond to individual sampling point
decisions. The goal in developing a hierarchical solver such as the hBOA is to
extend its capabilities to problem structures which exhibit strong multivari-
ate links between single decisions as well as clusters of decisions. The hBOA
learns proper hierarchical problem decomposition using a technique referred
to as chunking within the Bayesian network model building process. Chunking
is used within the model building process to allow groups of decision variables
which are related at lower hierarchical levels to be clustered, and subsequently
used to model higher order interactions [29]. Decision graphs are used to store
the conditional probabilities of each decision variable. The decision graphs
contain various nodes, all of which are permitted to have multiple parents
(except for the root node). The performance of the hBOA has been demon-
strated on both test functions [29, 58–60] and various real-world applications
such as the notably difficult Ising spin-glass systems [61,62]. However, there are
some known limitations to the hBOA. The Bayesian network model building
is challenging and adds complexity to the algorithm. In addition, population
size while seen as important within conventional EAs [63], is very important
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to the hBOA since the quality of its probabilistic models is directly correlated
with the size of the population sampled.

The hBOA algorithm is fundamentally different from a traditional MOEA like
the ε-NSGAII because it eliminates the crossover and mutation operators, and
replaces these with Bayesian network model building. Also, the original hBOA
algorithm was developed to handle only a single design objective. Since the
ε-NSGAII had been shown to be highly effective at solving LTM design prob-
lems in the past [7,9,30,42], it was decided that the new ε-hBOA should rep-
resent a combination of the strengths of both the ε-NSGAII and the original
hBOA. To accomplish this, the Bayesian network model building of hBOA was
used to replace the SBX crossover and polynomial mutation operators of the
ε-NSGAII. This results in a multiobjective algorithm with dynamic popula-
tion sizing and ε-nondominance archiving options. The new ε-hBOA algorithm
proceeds as follows. Initially, a population of N random designs is generated
and the concept of Pareto-dominance is used to assign fitness values to each
design based on its performance in terms of each design objective (see Fig-
ure 2). A Bayesian network is then iteratively generated based on this parent
population of designs using the BIC metric as a termination criteria. Child
solutions are then generated by sampling the resulting Bayesian network’s
modeled joint probability distribution for sampling designs. The algorithm
then proceeds similarly to the ε-NSGAII where Pareto ranking and crowded
binary tournament selection are used to fill a new population of N superior
designs. The N children of the new population are eligible for inclusion in the
ε-nondominated archive and become the parents of a subsequent generation
from which the process is repeated until some termination criteria is met. Dy-
namic population sizing can also be utilized by the new ε-hBOA developed
in this study, resulting in a series of “connected runs” each with a unique
population size based on search progress (ε-nondominated archive size).

4 Computational Experiment

The ε-NSGAII and the ε-hBOA algorithms were tested on both the 25 well
and 58 point LTM network design test cases described in Section 2.1 to deter-
mine the effects of Bayesian network model building on algorithm performance.
Several configurations of the new ε-hBOA algorithm were tested to determine
the important factors affecting algorithm performance.
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Fig. 2. Schematic diagram of the ε-hBOA illustrated using the notation of Deb
et al. [45]. This figure shows the connected runs and dynamic population sizing
concepts of the ε-NSGAII combined with Bayesian network model building and
simulation (both features of the hBOA). In the figure, N represents population size
and A represents ε-nondominance archive size.

4.1 Reference Set Generation

The true solution to the 25 well test case was fully enumerated, ultimately
providing the most rigorous evaluation framework with regard to algorithm
performance. The Pareto-optimal solution set for the 25 well test case is com-
posed of 2,472 solutions and is shown in Figure 3A with the COST, ERROR,
and UNCERT objectives plotted on the X, Y, and Z-axes respectively. Since
this is a four objective problem, the color of the solution is used to repre-
sent the MASS objective where red solutions indicate high mass error and
blue solutions indicate low mass error. Objectives values for this Pareto-set
range from 8 to 47 in the COST objective, 0 to 43.7 in the ERROR objective,
1396 to 1672 in the UNCERT objective, and -7 to 1.72 in the MASS objective
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(which is scaled logarithmically).

The 58 point test case is significantly more difficult and cannot be enumerated
since the decision space is composed of over 2.9× 1017 possible designs. How-
ever, a best known solution was generated by combining all solutions found by
all trials of all algorithm configurations explored in this study. The union of all
solution sets from all algorithm configurations was then reduced to a Pareto-
approximation of the true Pareto set. The Pareto-approximation for the 58
point test case contains 22,333 solutions and is shown in Figure 3B, where
again, the MASS objective is represented by the color of the solutions. Objec-
tives for this Pareto-approximation range from 5 to 58 in the COST objective,
0 to 48.8 in the ERROR objective, 1376 to 1702 in the UNCERT objective,
and -7 to 2.31 in the MASS objective. The most notable feature of the 58 point
case is that it generally results in increased ranges of objective values as a re-
sult of being able to sample from individual locations along each well. Figure
3C shows a closer view of the central region of the Pareto-approximation that
highlights the density of solutions. Here it can be seen that at each level of
cost, a three objective tradeoff surface exists between ERROR, UNCERT, and
MASS. Figure 3C shows that the reference set’s solution density is greater for
sampling schemes that yield larger numbers of combinations (e.g., selecting
57 of 58 total locations yields far fewer combinations than does selecting 30
locations as expected).

4.2 Performance Assessment of MOEAs

When evaluating the performance of MOEAs, metrics that measure the effec-
tiveness, efficiency, and reliability of the algorithm are important. Effectiveness
refers to the ultimate performance of the algorithm (i.e., how well did it solve
the problem), and is evaluated by measuring end-of-run statistics for how well
reference sets were captured. Measuring algorithm efficiency is important for
the computational costs and overall search dynamics of the algorithm. Was it
slow to get started initially? Did it reach its final solution quickly? Algorithm
efficiency can be assessed using runtime performance metrics which record
the progress of the algorithm throughout its entire run. Reliability provides a
measure of the reproducibility of the results of the algorithm for different ran-
dom seeds. Since MOEAs require random initial populations, the choice of this
initial population may or may not influence the effectiveness and efficiency of
the algorithm. Ideally, it is desired that the initial population have no bearing
on algorithm performance. The reliability of the algorithm is assessed using
random seed analysis where multiple random initializations (trials) are run.

Runtime convergence [64] is used in this study to measure the average Euclid-
ean distance between an approximation set (i.e., the set of solutions found by
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A B

C

25 Well Pareto-Set 58 Point Pareto-Approximation

Fig. 3. Plots A and B show the 25 well Pareto-set and 58 point Pareto-approximation
respectively. Plot C shows an enlarged view of a densely populated area of the 58
point Pareto-approximation. COST, ERROR, and UNCERT are plotted on the X,
Y, and Z-axes, and MASS is plotted using color.

the algorithm [65]) and a reference set (i.e., the true Pareto set or best known
solution). Small values of convergence are preferred indicating a small aver-
age distance to the reference set. The runtime ε-performance metric, recently
proposed by Kollat and Reed [41] measures the proportion of ε-nondominated
solutions which have been found within an acceptable ε-error for the reference
set. This metric uses the concept of ε-nondominance where the desired preci-
sion for each objective is specified, and the approximation and reference sets
are then sorted based on this precision. In this way, the “strictness” of the
ε-performance metric can be strengthened or relaxed based on the precision
requirements of the user. The ε-performance metric ranges from zero to one
where a metric value of one indicates 100-percent convergence based on the
specified ε-nondominance precision of the reference set. The unary ε-indicator
metric [65] quantifies the smallest distance that an approximation set must
be translated in order to completely dominate a reference set. Small values of
this metric are desirable as this indicates a closer approximation to the ref-
erence set. For additional details on the unary ε-indicator metric, see Zitzler
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and Thiele [66] and Zitzler et al. [65]. The hypervolume metric [67] quantifies
the volume of the approximation set with respect to some reference or nadir
point. When a reference set is available, this metric can be calculated with
respect to the reference set. In other words, when minimizing objectives, the
hypervolume can be calculated as the difference in volume between an ap-
proximation set and the reference set. When calculating the hypervolume as a
difference, small values are optimal indicating small difference with respect to
the reference set. The hypervolume metric is an excellent measure of solution
set diversity or spread across the full range of tradeoffs. The statistical metrics-
based evaluation framework used in this study provides a direct measure of
performance differences for the tested MOEAs with respect to their ability to
converge while maintaining a diverse representation of tradeoffs [65, 68].

4.3 Algorithm Configurations

Various algorithm configurations were tested on both the 25 well and 58 point
LTM test cases. Preliminary analysis of a variety of configurations allowed us
to focus on six major configurations which embody the major findings of the
study. These six configurations are now described in detail.

ε-NSGAII. This configuration refers to the original ε-NSGAII algorithm,
and was chosen as a current performance benchmark. The ε-NSGAII was
parameterized to use an initial population size of 12 individuals and an ε-
nondominated archive injection rate of 25-percent. This means that following
each connected run, a new population is generated based on the archived solu-
tions (at a rate of 25-percent), and 75-percent random solutions. This injection
rate was previously found to produce the most efficient algorithm performance
for the ε-NSGAII relative to other injection rates [41]. Additional relevant pa-
rameters include the probability of SBX crossover = 1.0 [46], the probability
of polynomial mutation = 0.02 [10], the distribution index for SBX crossover
= 15, and the distribution index for polynomial mutation = 20, all of which
are based on prior literature recommendations.

ε-hBOA-Base. This notation refers to a base version of the
ε-hBOA algorithm as described in Section 3.2 and Figure 2. The
ε-hBOA-Base implementation replaces the ε-NSGAII’s traditional crossover
and mutation operators with Bayesian network model building and simula-
tion of a new population based on this model. This configuration then uses
binary crowded tournament selection available within the ε-NSGAII and
originally utilized by the NSGAII [45] to determine whether newly simulated
population members should replace their parents. In addition, ε-NSGAII’s
dynamic population sizing techniques are utilized within the ε-hBOA with
an ε-nondominated archive injection rate of 25-percent. Pelikan [29] showed
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previously that the population size required for optimal model building
within hBOA is on the order of O(2kn1.05) where k is the building block
order and n is the number of binary decision variables. Assuming a lower
bound building block complexity of k = 4 decisions (i.e., no more than four
sampling locations are jointly important), this would require a population of
approximately 1000 individuals. This lower bound population size was chosen
as the initial population size for the ε-hBOA-Base configuration. However,
as stated, this reflects a lower bound complexity and the ε-nondominated
archive injection will ensure that the population size increases as search
progresses.

ε-hBOA-Archive. This notation refers to a version of the ε-hBOA which
utilizes the current ε-nondominated archive in the Bayesian network model
building. In other words, following each generation, the current best found
solutions that are stored in the ε-nondominated archive are combined with
the currently evolving population to build the Bayesian network model. This
configuration was tested to confirm if the inclusion of additional (high quality)
information in the model building would improve algorithm performance.

ε-hBOA-RTR. The original hBOA algorithm utilized restricted tournament
recombination (RTR) as recommended by Pelikan [29] to determine which
children should replace parent members of the population. Based on this rec-
ommendation, a configuration of the ε-hBOA algorithm which utilized RTR
instead of binary crowded tournament recombination was tested.

ε-hBOA-Static. According to Pelikan’s [29] theoretical population sizing re-
quirements for the hBOA, the required population can become quite large,
especially for problems with many decision variables. To test the importance
of population size, a static population size variant of the ε-hBOA algorithm
was tested that eliminated the dynamic population sizing available within the
ε-NSGAII. Requiring the specification of a static population size adds an ad-
ditional parameter to the algorithm that is difficult to estimate a priori. For
the smaller 25 well test case, the static population size was chosen based on 2l
(where l is the number of decisions) generations of evolution [69,70] (i.e, 50 for
the 25 well case) and a maximum runtime of 200,000 evaluations for a total
static population of 4,000 individuals. For the larger 58 point test case, the
population size was based on the average archive size attained for individual
runs of the ε-hBOA-Base. Several prior EA studies [25,28,71] have shown that
MOEA population size is a direct function of the Pareto set size. The popula-
tion size is very important to the hBOA since the quality of its probabilistic
models is directly correlated with the size of the population sampled.

ε-hBOA-Hybrid. Since one of ε-NSGAII’s main strengths is utilizing small
populations initially to pre-condition search and since the hBOA requires large
populations to optimally construct the Bayesian network, a hybrid version of
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the two techniques is tested in this study. The ε-hBOA-Hybrid configuration
utilizes the ε-NSGAII to pre-condition search for 10-percent of the total run
duration and then switches to a static population size using the ε-hBOA.
The static population size utilized by ε-hBOA is strictly based on what the
ε-NSGAII found during the initial portion of the run at a 25-percent in-
jection rate. If the ε-NSGAII found 1000 ε-nondominated archive solutions
during the first 10-percent of the run, the static population size used by
the ε-hBOA would be 4000 individuals, 1000 of which are from the archive
and the remaining 3000 of which are initially generated at random. Once the
ε-hBOA-Hybrid version switches to the ε-hBOA, the population size remains
static.

Other Algorithm Parameters. A number of algorithm parameters were
specified identically across all configurations. The number of generations of
evolution per connected run was specified as 2l [69,70] where l is the number
of decisions. This means that for the 25 well test case, each run contained
50 generations and for the 58 point case, each run contained 116 generations.
The maximum runtime was chosen based on computational feasibility and was
expressed as a total number of function evaluations. For the 25 well test case,
the maximum number of evaluations was set at 200,000 and for the 58 point
test case, the maximum number of evaluations was set at 2-million. The ε-
dominance precision settings for each of the four design objectives were chosen
to result in very high precision Pareto-sets for each test case and were speci-
fied as ε= (1.0, 0.01, 0.01, 0.01) for each the COST, ERROR, UNCERT, and
MASS objectives respectively. Finally, 50 random seed trials were conducted
for each algorithm configuration to provide a means of assessing reliability.
Overall, 900 algorithm runs were conducted for this study, 300 for the 25 well
test case, 300 to generate the 58 point Pareto-approximation, and another
300 to obtain metric results for the 58 point test case relative to the generated
reference set. This represents well over 1-year of continuous computing on a
serial machine. However, individual runs were distributed across the LION-
XO high performance computing cluster available at The Pennsylvania State
University in order to be completed within a couple of weeks.

5 Results

5.1 Effectiveness of Search

Figure 4 displays a histogram showing the relative effectiveness of each algo-
rithm configuration at identifying reference set solutions for the 58 point test
case. Light grey bars signify the total percentage of the reference set’s solu-
tions identified by a particular configuration across all random seed trials. The
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Fig. 4. Histogram displaying the relative contributions of each algorithm configura-
tion to the 58 point test case reference set. Light gray bars indicate total contribution
across all random seed trials, medium gray bars, the average per seed contribution,
and the black bars, unique contribution across all seeds.

medium grey bars signify the average per seed effectiveness for each configura-
tion and the error bars indicate one standard deviation. Finally, the black bars
indicate the total unique contribution of each configuration, which is defined as
the number of solutions that a particular configuration contributed across all
random seed trials that no other configuration found. From the histogram, it
is clear that the ε-hBOA-RTR configuration contributed the least to the refer-
ence set in all categories. The ε-hBOA-Base, ε-hBOA-Archive, ε-hBOA-Static,
and ε-hBOA-Hybrid configurations contributed the largest percentages over-
all (between 80 and 85-percent), while the average per seed contribution of
the ε-hBOA-Static configuration was the highest at 41.7-percent, more than
twice that of all other configurations except the ε-hBOA-Archive. In addition,
the ε-hBOA-Static configuration provided the highest contribution of unique
solutions at 4.1-percent, more than twice that of any other configuration ex-
cept the ε-hBOA-Hybrid. These results indicate that on a per seed basis,
the ε-hBOA-Static configuration is capturing the highest percentage of the 58
point test case’s reference set.

Table 1 displays metric values for each algorithm configuration for the smaller
25 well test case. Metrics were evaluated when the number of function evalua-
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tions (NFE) reached 25,000 and again at the end of the run (NFE = 200, 000).
The reader is reminded that minimal values of convergence, ε-indicator, and
hypervolume are preferred while ε-performance expresses the proportion of
the reference set found, meaning that 1.0 is optimal for this metric. Hyper-
volume metric results are not available at NFE = 25, 000 because the non-
dominated sets which are required to calculate the metric were not output
throughout the run, only at the end of the run. This table shows the average
metric value for all 50 random seed trials as well as the standard deviation
in parentheses. In addition, a Kruskal-Wallis [72] non-parametric statistical
test was used to test the statistical significance of performance differences at
the 95-percent confidence level for the metric distributions attained for each
algorithm configuration. The results of the statistical tests were used to rank
the relative performances of each algorithm configuration and the top per-
forming algorithm configurations for each metric are highlighted in bold in
Table 1. In Table 1, the ε-hBOA-Static configuration is the worst performer
early in the run in terms of all metrics, but subsequently becomes the best
performer by the end of the run. In terms of early run results, it appears
that the ε-hBOA-Archive and ε-hBOA-Base configurations are the top per-
formers. The ε-hBOA-Base configuration maintains good overall performance
throughout the run, and generally ends the run in second place. It seems
that the ε-hBOA-Archive and ε-hBOA-Hybrid configurations are comparable
to one another by the end of the run and the ε-hBOA-RTR configuration is
the worst performing configuration overall. It is interesting to note that the
ε-NSGAII performs well in terms of both the ε-indicator and hypervolume
metrics. The performance of the ε-NSGAII in terms of the ε-indicator and
hypervolume metrics is likely due to early rapid approximation of the 25 well
test case reference set as was shown by Kollat and Reed [30].

Table 2 displays early run (NFE = 250, 000) and end-of-run (NFE =
2, 000, 000) metric results for the 58 point test case. Statistically sig-
nificant rankings are displayed similarly to Table 1. Early in the
run, the ε-hBOA-Base configuration is the top performer while the
ε-hBOA-Archive configuration trails in second place. The computational
scaling limitations highlighted by Kollat and Reed [30] are caused the
ε-NSGAII to be the worst performer overall. At the end of the run, the
ε-hBOA-Static configuration is again the top performer, similarly to the 25
well test case. Although the ε-hBOA-Static configuration has the drawback of
requiring a careful specification of the population size and exhibits an early
run lag in terms of finding reference set solutions, it ultimately produces the
best performance over all other configurations. Again, only top ranked config-
urations with statistically significant performance differences are highlighted
in bold in Table 2. The reader should also note that there are many cases for
the ε-indicator and hypervolume metrics where multiple configurations share
statistically similar performance. To further elucidate performance differences,
the next section provides a detailed analysis of search performance dynamics.
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Table 1
NFE = 25, 000 and end-of-run mean and (standard deviation) metric results for
the 25 well test case. Metric values in bold text indicate statistical superiority at a
95-percent confidence level.

NFE=25,000 Conv.×103 ε-Perf. ε-Ind. Hyper.×10−5

ε-NSGAII 14.210 (2.876) 0.127 (0.025) 3.965 (0.313) NA

ε-hBOA-Base 2.751 (0.507) 0.420 (0.015) 4.297 (1.155) NA

ε-hBOA-Archive 2.911 (0.665) 0.427 (0.018) 4.005 (0.857) NA

ε-hBOA-RTR 8.880 (1.807) 0.205 (0.023) 4.518 (0.975) NA

ε-hBOA-Static 36.910 (1.923) 0.008 (0.002) 6.668 (0.468) NA

ε-hBOA-Hybrid 15.610 (2.940) 0.106 (0.022) 4.003 (0.344) NA

NFE=200,000 Conv.×103 ε-Perf. ε-Ind. Hyper.×10−5

ε-NSGAII 1.560 (0.270) 0.688 (0.015) 3.494 (0.308) 5.085 (0.619)

ε-hBOA-Base 0.866 (0.147) 0.698 (0.015) 3.460 (0.571) 5.381 (0.444)

ε-hBOA-Archive 0.994 (0.274) 0.683 (0.020) 3.539 (0.657) 5.658 (0.352)

ε-hBOA-RTR 1.740 (0.304) 0.557 (0.021) 3.478 (0.256) 5.709 (0.392)

ε-hBOA-Static 0.787 (0.154) 0.752 (0.011) 3.133 (0.317) 5.176 (0.617)

ε-hBOA-Hybrid 1.140 (0.253) 0.703 (0.018) 3.465 (0.174) 5.511 (0.337)

5.2 Search Efficiency and Reliability

Figure 5 plots ε-performance success rates for each algorithm configuration
for the 25 well and 58 point test cases. The ε-performance success rate is
defined as the percentage of random seed trials that exceed some threshold
of metric performance for a given NFE to provide insight into algorithm dy-
namics. Cases with nearly vertical success rate cumulative distribution curves
represent highly reliable performance where all of a configuration’s random
seed trials exceeded the threshold of performance at approximately the same
NFE. Likewise, small slopes for success rate curves indicate low search reli-
ability. For the 25 well test case, ε-performance success rates are plotted at
thresholds of 0.25, 0.5, and 0.7 (corresponding with quantification of 25, 50,
and 70-percent of the reference set) in Figures 5A through 5C respectively.
Figure 5A indicates that all configurations are fairly reliable at quantifying
25-percent of the 25 well test case’s reference set. However, it appears that
the ε-hBOA-Base and ε-hBOA-Archive configurations exceed this threshold
fastest, while the ε-NSGAII and ε-hBOA-Static configuration are the slow-
est at meeting this goal. A shift in relative configuration success rates can
be noted in Figure 5B where the ε-hBOA-Static configuration moves from
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Table 2
NFE = 250, 000 and end-of-run mean and (standard deviation) metric results for
the 28 point test case. Metric values in bold text indicate statistical superiority at
a 95-percent confidence level.

NFE=250,000 Conv.×103 ε-Perf. ε-Ind. Hyper.×10−6

ε-NSGAII 16.028 (1.403) 0.005 (0.002) 3.796 (0.240) NA

ε-hBOA-Base 7.574 (1.393) 0.066 (0.014) 3.713 (0.372) NA

ε-hBOA-Archive 7.707 (1.185) 0.061 (0.015) 3.666 (0.305) NA

ε-hBOA-RTR 12.959 (1.703) 0.018 (0.006) 3.783 (0.202) NA

ε-hBOA-Static 11.945 (0.778) 0.005 (0.001) 3.908 (0.258) NA

ε-hBOA-Hybrid 14.952 (1.532) 0.007 (0.004) 3.787 (0.272) NA

NFE=2,000,000 Conv.×103 ε-Perf. ε-Ind. Hyper.×10−6

ε-NSGAII 8.029 (1.001) 0.086 (0.014) 2.903 (0.170) 2.014 (0.296)

ε-hBOA-Base 4.897 (1.075) 0.243 (0.040) 3.252 (0.415) 2.096 (0.323)

ε-hBOA-Archive 5.688 (1.015) 0.208 (0.045) 3.136 (0.288) 2.139 (0.265)

ε-hBOA-RTR 10.413 (1.964) 0.074 (0.021) 3.365 (0.222) 2.492 (0.326)

ε-hBOA-Static 3.187 (0.388) 0.414 (0.023) 2.927 (0.223) 1.830 (0.388)

ε-hBOA-Hybrid 6.375 (1.478) 0.195 (0.049) 2.908 (0.192) 1.992 (0.324)

last place to third place, and ε-hBOA-Hybrid moves from 5th place to 4th
place. It should be noted that the ε-NSGAII and ε-hBOA-Hybrid versions are
equivalent in Figure 5A since ε-NSGAII is performing the search early in the
ε-hBOA-Hybrid configuration’s run. In Figure 5C, a pronounced shift in suc-
cess rate is exhibited where the ε-hBOA-Static configuration moves to first
place and all other configurations fail to find the reference set to an accuracy
of 70-percent in 200,000 evaluations.

For the 58 point test case, the success rate plots shown in Figures 5D through
5F indicate that the ε-hBOA-Static configuration is again the fastest and
most reliable for all ε-performance thresholds of 0.1, 0.2, and 0.3. In addi-
tion, as the success rate threshold becomes more rigorous, other configura-
tions fail to quantify the reference set at increased accuracy. For example, the
ε-NSGAII and ε-hBOA-RTR configurations completely fail to find 20-percent
of the reference set, while all but the ε-hBOA-Static configurations fail to find
anything above 30-percent of the reference set in 2-million design evaluations.
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Fig. 5. Epsilon-performance success rates plotted versus function evaluations (NFE)
at specified thresholds for both the 25 well and 58 point test cases.

5.3 Balancing Efficiency and Reliability

Figure 6 shows the dynamic performances of three configurations: ε-NSGAII,
ε-hBOA-Base, and ε-hBOA-Static. The choice of these configurations was
based in part on their overall performance and because they represent three
fundamentally different algorithms. Figure 6 displays runtime dynamics for
the convergence and ε-performance metrics on both the 25 well and 58 point
test cases. Dynamic performance is captured by plotting the metric attained
by each seed as a function of the number of designs evaluated for all 50 ran-
dom seed trials of the three algorithms. For the 25 well test case (Figures 6A
and 6B), it is clear that the final effectiveness of all configurations is some-
what comparable, which is expected given that the problem’s size is mod-
est. Kollat and Reed [9] have already demonstrated that the ε-NSGAII can
successfully solve this test case. This is an interesting lower bound prob-
lem complexity where the ε-NSGAII has the maximal chance of exceeding
the ε-hBOA configurations’ performances. The ε-NSGAII’s search proceeds
very quickly initially (i.e., NFE = 10, 000), but is rapidly overtaken by the
ε-hBOA-Base configuration. The ε-hBOA-Base exhibits the fastest initial per-
formance of the three algorithms compared. The ε-hBOA-Static configuration
is slow to start, but ultimately achieves the best performance of the three
configurations after an initial lag period for evolutionary search.

23



ACCEPTED MANUSCRIPT 
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

NFE

Co
nv

er
ge

nc
e

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ε-
Pe

rf
or

m
an

ce

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ε-
Pe

rf
o

rm
an

ce

 

 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Co
nv

er
ge

nc
e

 x 10 5 NFE x 10 5

NFE x 10 6 NFE x 10 6

25 Well Test Case 

58 Point Test Case 

C 

B A 

D 

ε-NSGAII

ε-hBOA-Base

ε-hBOA-Static

Fig. 6. Convergence and ε-performance dynamics for the ε-NSGAII, ε-hBOA-Base,
and ε-hBOA-Static configurations. Plots show each of the 50 random seed trials for
each configuration plotted as metric value versus function evaluations (NFE).

For the 58 point test case (Figures 6C and 6D), the difference in final perfor-
mance of each configuration is more pronounced. The ε-NSGAII does not scale
well for the 58 point test case. While the ε-hBOA-Base configuration provides
a very rapid initial solution approximation, the ε-hBOA-Static configuration
quickly overtakes the performance of the ε-hBOA-Base configuration. It
should be noted that the ε-hBOA-Base and the ε-hBOA-Static configurations
represent a tradeoff between efficiency and the ultimate search effective-
ness. The ε-hBOA-Base has the strong advantage of eliminating the need
to specify any search parameters while the ε-hBOA-Static provides highly
reliable search. In general for users with severe computational constraints,
the ε-hBOA-Base would be the superior choice for attaining rapid approx-
imations while not requiring any search parameters. If users can use high
performance computing or other means for reducing their computational con-
straints, use of the ε-hBOA-Static configuration would be beneficial. As was
done in this study, the two configurations could be used in tandem by us-
ing the ε-hBOA-Base’s archive size from a preliminary run to determine an
effective population size for the ε-hBOA-Static configuration.
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5.4 Understanding Convergence Versus Diversity

In order to further assess performance differences between the ε-NSGAII,
ε-hBOA-Base, and ε-hBOA-Static configurations, the best random seed trial
from each configuration (based on ε-performance end-of-run metric values)
was used to generate a Pareto approximation for the 58 point test case con-
taining 15,355 solutions. In total, 8-percent of this set was contributed by
all three configurations, and 32.4-percent of the set was contributed by both
configurations of the ε-hBOA. However, the ε-hBOA-Static configuration con-
tributed 37.4-percent uniquely to the set (meaning that no other configu-
ration found these particular solutions). This represents nearly four times
the unique contribution of the ε-hBOA-Base configuration (10.5-percent), and
eight times the unique contribution of the ε-NSGAII (4.2-percent). In all, the
ε-hBOA-Static configuration would have found 82-percent of this set.

Figure 7 shows the approximate Pareto set generated from the best trials of
the ε-NSGAII, ε-hBOA-Base, and ε-hBOA-Static configurations for the 58
point test case. COST, ERROR, and UNCERT are plotted on the X, Y, and
Z-axes. The plot shown in Figure 7 differs from the plotting technique of Fig-
ure 3 in that MASS objective is portrayed by the orientation of the solution
cones (pointing up means high MASS and pointing down means low MASS).
This is because color is reserved in this plot to reflect which algorithm gen-
erated the solution (blue represents ε-hBOA-Static, green - ε-hBOA-Base,
and red - ε-NSGAII). Subplots B, C, and D in Figure 7 show detailed views
of the regions highlighted in subplot A. These detailed views show the pre-
dominant contribution of the ε-hBOA-Static configuration indicated by the
blue points. In general, structural differences between the ε-hBOA-Base, and
ε-hBOA-Static solution contributions seem to be limited to the shear quantity
of solutions discovered. In other words, the ε-hBOA-Static configuration finds
many more solutions, ultimately filling out portions of the objective space
more densely. An interesting feature of these detailed views is that they show
how the ε-NSGAII contributes uniquely to the set. Figure 7B shows that the
ε-NSGAII finds several solutions at the farthest extent of the set corresponding
to very high COST where most of the potential monitoring points are sampled.
In addition, there are regions of unique contribution of the ε-NSGAII visible in
Figures 7C and 7D. The unique contributions of the ε-NSGAII are all charac-
terized by their sparsity. This indicates that the ε-NSGAII is better at finding
solutions in regions of the set with low solution density. This explains the
highly ranked performance of the ε-NSGAII in terms of the ε-indicator and
hypervolume metrics in Tables 1 and 2, because these metrics are sensitive to
the geometric distribution of solutions across the objective space.
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- ε-NSGAII
- ε-hBOA-Base
- ε-hBOA-Static

A B

D

C

C

D

B

Fig. 7. Pareto approximation set generated by combining the best trial runs of each
the ε-NSGAII, ε-hBOA-Base, and ε-hBOA-Static configurations. COST, ERROR,
and UNCERT are plotted on the X, Y, and Z-axes while the MASS objective is
portrayed by the orientation of the solution cone (up = high MASS, down = low
MASS). Red solutions were contribution by the ε-NSGAII, green solutions by the
ε-hBOA-Base, and blue solutions by the ε-hBOA-Static configuration.

6 Discussion

The results of this study indicate that the ε-hBOA is more effective than the
ε-NSGAII at optimizing both the 25 well and 58 point LTM test cases. Per-
formance differences between the ε-NSGAII and ε-hBOA are notably more
pronounced on the larger 58 point LTM test case. Relative performance dif-
ferences between the various configurations of the ε-hBOA are informative
with regard to the factors that affect the quality of Bayesian network models.
The relatively poor performance of the ε-hBOA-RTR configuration can be at-
tributed to a lack of selection pressure, ultimately slowing the progress of the
algorithm. Restricted tournament recombination randomly selects solutions
from the parent and child populations and places them in competition within
binary tournaments to determine which solution proceeds to the next gen-
eration. Alternatively, crowded binary tournament selection utilized by the
ε-NSGAII first ranks both parents and children according to their relative
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position with respect to non-domination. The subsequent population is then
filled by allowing the highest ranked solutions to proceed to the next genera-
tion. This recombination method places more emphasis on highly fit solutions
and hence increases the selection pressure of the algorithm.

The changes in the relative performances of each configuration early versus
late in the runs (refer to Tables 1 and 2 as well as Figures 5 and 6) can be
explained in terms of population size effects. The ε-hBOA-Base configuration
uses an arbitrarily small initial population size, which allows it to rapidly
approximate the Pareto set. However, the initial small population provides
a reduced statistical sample for optimal model building [29] and as a re-
sult, the long-term performance of this configuration suffers. Alternatively,
the ε-hBOA-Static configuration uses a static population size that is initially
very large, which initially slows the algorithm’s evolutionary exploration. In
the long term however, the ε-hBOA-Static configuration yields more accurate
models for decision interdependencies and enhanced search.

Performance differences between the ε-NSGAII and the
ε-hBOA configurations can largely be attributed to how solution den-
sity impacts ε-NSGAII’s SBX crossover operator versus ε-hBOA’s Bayesian
network model building. Figure 7 showed that the ε-NSGAII is better at
finding solutions in sparsely populated regions of the objective space. The
SBX crossover operator utilized by the ε-NSGAII is a parent-centric mating
approach whereby child solutions have a higher probability of being generated
close to their parents [73]. When the ε-NSGAII finds a solution in these
sparsely populated regions, the SBX crossover operator emphasizes a rela-
tively local search (i.e., small changes in the decisions), ultimately allowing
it to search these regions of the space more thoroughly. However, Figure 7
also showed that the ε-hBOA was more effective at generating solutions in
densely populated regions. There are clearly more ways to choose 30 of the
58 sampling points than 56 of the 58 points. These combinatorial differences
affect solution density throughout the search space. This ultimately dimin-
ishes the ability of the ε-hBOA to model sparse areas of the search space.
Since it is more difficult for the ε-hBOA to learn the structure of these sparse
regions, the net result is that it is less likely that Pareto-optimal solutions
will be simulated in these regions.

It was shown that the ε-hBOA-Base and ε-hBOA-Static versions were the
top-performing search schemes. In choosing between these two configura-
tions, the computational resources and expertise of the user must be con-
sidered. Overall, the ε-hBOA-Static configuration had the best long-term per-
formance, but required careful specification of the population size and sig-
nificant run-time to achieve high quality model building. In contrast, the
ε-hBOA-Base configuration is superior for rapid solution set approximations
and it eliminates the need to specify the population size parameter. If appro-
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priate computational resources are available, these two configurations could
be used in tandem. If no prior knowledge is available regarding the Pareto set
size (which is more typical), the ε-hBOA-Base configuration could be run to
determine the optimal population size for the ε-hBOA-Static configuration.
Once an approximation of the Pareto optimal solution set size is determined,
the population size of the ε-hBOA-Static configuration can be specified based
on a one-to-one ratio relative to the Pareto set size. In addition, since the reli-
ability of the ε-hBOA-Static configuration is high, random seed trial analysis
can be reduced or eliminated, dramatically reducing the computational burden
of using the ε-hBOA-Static configuration.

The success of the ε-hBOA relative to the ε-NSGAII implies that there are
strongly inter-related decisions within the LTM design problem and that
the ε-hBOA can exploit these dependencies through Bayesian network model
building. The physical contaminant plume structure implicit to the LTM de-
sign problem likely does present some degree of hierarchical difficulty, also
made apparent by the success of the ε-hBOA relative to the ε-NSGAII. The
25 well and 58 point test cases provide a means for testing if hierarchical
problem difficulty is impacting the performance of the search algorithms. The
ε-NSGAII has been well documented [26] in solving the smaller 25 well test
case efficiently and reliably. If the sampling decisions were statistically inde-
pendent as assumed by the ε-NSGAII’s mating and mutation operators, then
the ε-NSGAII should have been able to attain superior performance for the
smaller test case. Figure 6 demonstrates that this is not the case and that
even for the small 25 well test case, the ε-hBOA has superior performance.
Moreover, the large test case success rate plots and runtime dynamics for the
ε-NSGAII indicate that the algorithm is not reliable and that the best case
performance for the algorithm poorly represents its expected performance.

The region where the ε-NSGAII has the most distinct performance advantage
is very near the solution where all points are sampled. This region is actually
the least challenging to predict by the decision maker and likely of limited
interest. The compromise regions near the center of the reference set shown
in Figure 7 were best quantified by the ε-hBOA and are generally of most
interest for exploring the impacts of cost-savings on the remaining objectives.
The lower bound cost portion of the tradeoffs (i.e., regions of high errors in
Figure 7) is also an interesting region in terms of search difficulty. This portion
of the tradeoff surface is at the feasibility boundary for the constrained for-
mulation of this problem. Somewhat surprisingly, this region’s large objective
ranges and sparseness do not impair the ε-hBOA as illustrated in Figure 7.
The algorithm is able to find a superior representation of this portion of the
objective space relative to the ε-NSGAII. This result implies that the over-
all success or failure of the ε-hBOA is more heavily influenced by statistical
sampling than by the problem’s constraint. The feasibility boundary still has
a large number of potential solution combinations that can be sampled and
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modeled (i.e., designs consisting of five sampling points drawn from the full
set of 58 potential locations).

7 Conclusions

This study contributes a new MOEA termed the Epsilon-dominance Hier-
archical Bayesian Optimization Algorithm (ε-hBOA), for solving large, mul-
tiobjective groundwater monitoring design problems. The new ε-hBOA was
tested on a 25 well LTM design test case (a relatively small test case with
around 33-million possible designs) and a larger 58 point LTM design test
case containing over 2.88 × 1017 possible designs. Both test cases were op-
timized for four design objectives - COST, ERROR, UNCERT, and MASS.
The Pareto-optimal set for the 25 well test case contained 2,472 designs and
the Pareto-approximation for the 58 point test case contained 22,333 designs.
The ε-NSGAII , a top performing MOEA was tested relative to five config-
urations of the ε-hBOA. The ε-hBOA-Base configuration utilized dynamic
population sizing based on a 25-percent ε-nondominance archive injection
rate similar to the ε-NSGAII. The ε-hBOA-Archive configuration included
the current ε-nondominance archive in the model building following each gen-
eration. The ε-hBOA-RTR configuration utilized restricted tournament re-
combination rather than the crowded binary tournament selection utilized
by the ε-NSGAII. The ε-hBOA-Static configuration replaced dynamic pop-
ulation sizing with a static population size that was specified a priori. The
ε-hBOA-Hybrid configuration utilized the low cost search and dynamic pop-
ulation sizing of ε-NSGAII initially, and subsequently switched to a static
population size based on this initial search. A comprehensive, metrics based
analysis was performed to determine each the effectiveness, efficiency, and
reliability of each ε-hBOA configuration relative to the ε-NSGAII.

The results of the study demonstrate the scaling limitations of the
ε-NSGAII relative to the ε-hBOA. The ε-hBOA uses Bayesian network model
building to learn the complex interdependencies which exist within the LTM
design problem. In addition, because of ε-hBOA’s success relative to the
ε-NSGAII, the LTM problem is believed to exhibit some degree of hierarchical
difficulty due to the physical structure of the contaminant plume. It was shown
that the ε-hBOA-Base and ε-hBOA-Static versions were the top-performing
configurations of the ε-hBOA. Overall, the ε-hBOA-Static configuration per-
formed best, but required careful specification of the population size, and
significant run-time to achieve high quality solutions. In contrast, the
ε-hBOA-Base configuration was superior for rapid approximations and it
eliminated the need to specify an optimal population size a priori since
it automatically adapts its size based on search progress. If computational
resources are limited, the ε-hBOA-Base configuration would be an appro-
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priate choice to obtain rapid approximation to the Pareto set. However,
the ε-hBOA-Base configuration could also be used to determine the opti-
mal population size needed by the ε-hBOA-Static configuration and a sub-
sequent run can be conducted using the ε-hBOA-Static configuration to
achieve the highest quality solution possible. Since the reliability of the
ε-hBOA-Static configuration is high, random seed trial analysis becomes less
important, ultimately reducing the computational burden of this approach.

While this study demonstrated that the ε-hBOA is an effective improvement
over current MOEAs at solving LTM design applications, the monitoring de-
sign test cases examined represent a lower bound problem complexity because
they represent only a snapshot in time. The size and complexity of the search
space rapidly increases when spatiotemporal monitoring decisions are con-
sidered. In addition, monitoring complexities (e.g., the existence of multiple
contaminants) also adds to the difficulty of the monitoring design problem.
The authors of this study are working to develop a highly reliable, parallel
extension of the ε-hBOA capable of running on massively parallel computing
resources to further address the computational scaling issues associated with
groundwater monitoring design.
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